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EFFECT OF SUPPORT FLEXIBILITY AND DAMPING ON THE DYNAMIC RESPONSE
OF A SINGLE MASS FLEXIBLE ROTOR IN ELASTIC BEARINGS

by R. G. KIRK! and E. J. GUNTERZ

INTRODUCT | ON

The study of rotor dynamics has in racent years, become of increasing
importance in the engineering design of power systems. With the increase
in performance requirements of high-speed rotating machinery in various
fields such as gas turbines, process equipment, auxiliary power machinery
and space applications, the engineer is faced with the problem of designing
a unit capable of smooth operation under various conditions of speed and

load.

In many of these applications the design operating speed is o“ten
well beyond the rotor first critical speed, and under these circumstances
the problem of insuring that the turbomachine will perform with a stable

low-leve! amplitude of vibration is extremely difficult.

At the turn of the century H. H. Jeffcott (I) developed the fundamen-
tals of the dynamic response of the damped single mass unbalanced rotor
on a massless elastic shaft mounted on rigid bearing supports. The Jeffcott
analysis of the single mass model showed that operating speeds above The
flrst critical speed were possible and that a low level of vibration would

be attained once the rotor had exceeded the first critical speed.

As various compressor and turbine manufacturers adapted the flexible
rotor design concept in which the rotors were designed to operate above the
first critical speed, various units developed severe operating difficulties

which could not be explained by the elementary Jeffcott model.

Under certain conditions of high spe:d operation above the first
critical speed, such influences as internal rotor friction (2) hydro-
dynamic bearing and seal forces (3) and asrodynamic cross coupling (4)
can lead to a destructive nonsynchronous precessive whirl motion being

developed in the rofor system.

“Instructor, Department of Mechanical Fngineering, University of Virginia, Charlottesville, Virginia.

“associate Professor, Department of Mechanical Engineering, University of Virginia, Member, ASME.
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B. L. Newkirk and Kimball (5), in their early investigations of
instabilities in compressors due to internal friction, were able to deter-
mine experimentally that the introduction of a flexible support system
could greatly extend the rotor stability threshold speed. D. M. Smith
(6) in 1933 was the first to verify Newkirk's findings theoretically by
expanding the Jeffcott model with internal damping to include a massless
damped flexible support system. Recent investigators such as Lund (7,
Tond!l (8), Dimentberg (9) and others (10) have shown that flexible damped

supports may improve the stability characteristics of high speed rotors.

The present analysis was undertaken to primarily determine the in-
fluence of flexible supports on the synchronous unbalance response of the
single mass Jeffcott rotor, and to optimize the support system character-
istics so as to minimlize the rotor amplitude and forces transmitted over
a given speed range. The problem of bearing forces transmitted has been
examined by varlous researchers, (l1, 12, 13, 14) they have shown that a
significant reduction in the forces transmitted can be achieved by the

proper design of the bearing support system.

For example, Den Hartog (15) has shown that the tuned vibration ab-
sorber will greatly reduce the response of the forced vibrations of the
two-mass system. The following analysis parallels this approach for the
case of a single mass rotor excited by an unbalance load. The analysis
presents an analytic study of the tuned damper support system similar to
that employed by Broch (16) and also presents a generalized study performed
on the digital computer to obtain optimum support damping to produce the
best response of the rotor over a wide speed range. It is well known that
a damper support system can improve the vibration characteristics of a
rotating shaft and various investigators have considered the problem
either from the standpoint of a continuous elastic system or as a series

of Tumped masses (|7-23),.

Although the results presented in this paper apply specifically to
the single mass Jeffcctt model, the optimization procedure may be readily
extended to more complex multi-mass rotor bearing systems by employing a
finite element rotor digital computer program similar to the procedure
presented by Lund in Ref. 24 or by using the procedure as outlined in the
paper presented by Crook and Grantham (25) on the vibration analysis of

turbine generators on damped flexible supports.
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EQUATIONS OF MOTION

Figure 1*represents the single mass Jeffcott rotor mounted in damped
elastic supports. In the Jeffcott model, the shaft is considered as a
massless elastic member and the rotor mass is concentrated in a disc
mounted at the center of the span. The shaft in term is supported in

linear bearings which are mounted in damped flexible supports.

Neglecting rotor acceleration and the disc gyroscopics, the governing
equations of motion for the rotor, bearings, and support system in complex

notation reduce to the following (See Appendix A for derivation):

iwt

" " * - _ - 2
MaZy + CSZZ + CIZS QZy + (KS |mCi)Zs Mzeuw e (1)
Csz - CiZs + Kbe - (Ks - iwCi)ZS =0 (2)
MiZy + C1Zy + KyZy - CiZs - (KS - IwCi)ZS =0 (3)

where

Zs =2Z, - Zj - Z1 = relative shaft deflection.
If the internal damping Ci and the aerodynamic cross coupling term Q
are excluded from the above equations then the system will be stable (26).

After the initial transient motion has damped out, it may be assumed
that the system steady-state motion is circular synchronous precession. In
this case the displacements are related o the velocity and acceleration

vectors as follows:

7 = A eiwf
i i
Zi = ini (4)
Z, = iz, = - w2z,
*I1lustrations begin on page 38.
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where Ai is In general complex.

The differential equations of motion may be reduced to a set of algebraic

equations for the determination of the rotor steady-state motion.

- 2 i - - = 2
(KS Mzw + ICSW)AZ KSAj KSAl Mzeuw (5>
’KSAZ + (Kb + Ks + Iwa)AJ. + KSAI =0 (6)
- - 2 i =
Kehz + KA, + (Ky + K = Mja? + iuCp)A = 0 (7

ROTOR AMPLIFICATION FACTOR

Consider the steady-state orbit of the flexible rotor on rigid
supports. The rotor amplitude Is a function of bocth the rotor and bearing
stiffness and damping characteristics. Assuming A; is zero, the relative
Journal bearing complex amplitude from Eq. 7 is given by

A = b b__ 4, (8)

J 2 2
(KS + Kb) + (me)

K (K + K - iuC )
s s

Sotving Eq. 8 for the rotor amplitude yields

(Ko = Mow? - iwCy)
A2 = Mzeuwz (9
(Ko = Maw?)2 + (wCy)2

where
‘. - KoKg (K + K.Y + KS(wa)2
(K, + Kb)2 + (wa)2
¢, - Kszcb ‘e

2 2 S
(Kb + Ks) + (me)

The rotor displacement vector Z, may be expressed in terms of the

absolute displacement R, and the phase angle ¢ as follows

Z, = Rye! WT = &) (10



wiad vt 0] BA

where

2
g, - Mzeuw
Kz = Mp?)2 + (uCp)?
wCyp
¢ = tan~!
Ky = Mpyw?

The above results are similar to the rotor amplitude and phase angle
results for the single mass flexible rotor on rigid supports as shown by

Thomson (27}.

The rotor undamped, or natural critical speed is given by

K2 "5
o. =\ wr A/ (n
2
(Kb + KS)MZ

For the case of a lightly damped rotor system on rigid supports the
maximum rotor amplitude will occur at approximately the rotor critical
speed and the dimensionless rotor amplitude or amplification factor at

the critical speed is given by

R2 Ko
A=e—-lw=w alryron (12)
u c c :
Example |

Consider a 97 Ib. disc centered on a uniform masslesi elastic shaft
as shown in Fig. (1). Assume that the bearing stiffness fn is 500,000
Ib/in and that the effective shaft stiffness KS at the disc station is
333,000 Ib/in. Assuming light damping, the total stiffness K, is given by
K K

12
K = —22— 1 x0:333 x 107 . 550 000 1b/in

6
KS + Kb (1 + 0.333)10

The rotor critical speed is

Ko
B - 250,000 _
W, —\/ Wiy —\/ e = 1,000 rad/sec

“}



or NC = 9,550 RPM,

'f the rotor damping CS is assumed to be I5 Ib - sec/in and the bearing
damping coefficient Cb/2 is 80 Ib - sec/in, then the effective system damp-
ing coefficient C, is approximately given by

K_2C

2 12
cp =, + —22 = p.s 4 10:33902 X 1012 X 160_ o0 |y o

(K + Ks)2 (1.333)2 x |pl2

The amplification factor at the rotor critical speed is given by

K2
L _ 250,000 _
R T AT o T To00 X 25 T 10+

The amplification factor of 10 represents a very lightly damped rotor
system and indicates that the rotor amplitude at the critical speed will be
10 times the rotor unbalance eccentricity e,

ROTOR RESPONSE ON DAMPED FLEXIBLE SUPPORTS

Solution of Eq. 7 for the case of synchronous precession for the
shaft relative defiection Zs ylelds

r .
K (K + K) + (uC )2 + iuC K
Z_ = (Zp - Zp) b b s - b - bs (13)
(Ky + K2 + (aC,)

Hence, in terms of the general coefficlents C, and K,

(K2 + 1w(Cy = C)

R (14)
- S

Z = (Zp - Z)

The simultaneous equations for the absolute shaft and support housing
motion reduce to the following

LKy + Ko = Mjw? + jw(Cy + Cy - C_1A; + [-1w(Cy = C) = K,JA, = O
1 2 1 sHAl s 272

(15)



[-K, - iwtC, - C AL + [Ky - Maw? + TwCpJA; = Mzeuw2 (16)

[ the damping terms are neglected, then the natural frequencies
of the system may be determined by the expansion of the determinant of

coefficlents. The resulting frequency equation may be expressed as follows:

Al L+ K T+K. 1., _ K
w1, 2/u, -“V/§.+ = i'\/( TR R an
where
2
Ye TV M,

Figure 2 represents the dimensionless critical speeds vs. the dimen-
sionless support stiffness factor K for various values of support fo rotor
mass ratios. Note that the incorporation of the flexible support with the
rotor bearing system causes two critical speeds to occur; one which is
higher and one which is lower than the original rotor critical on rigid

supports.

To solve for the complex support and rotor amplitudes A; and Ay, Eq.

16 and |7 may be expressed as follows:

[a,, + ibij]A =F.; J=1,2;, V=1, 2 (18)

] J i

Multiplying Eq. |9 by the complex Inverse matrix of coefficients and ex-

panding ylelds

Fi1 212 + ib12

Fo azp t+ Ibsy

A] = A » (19)

Where

[~
1]

dr + adi

d_ = (Kp = Maw2)(K; = Mjw?) - KpMaw? - C1Cou? - w2C_(Cp - CJ)



d; = CrulKy = Mpw?) + Cou(Ky = Mpw? = Mpw?) + Cowlky + Mpw?)

Expanding Eq. 20

Fiaz2 = Fa315 + i(Fibsy = Fobyp)
AL = T
r |

(20)

[n this case only an external unbalance excitation force Fo is acting
on the shaft and no external exciting force F; is assumed to be present on
the support system. For example, an excitation for Fi may be transmitted
to the rotor system through the support structure by vibrations of auxlliary

or adjacent equipment.

Fz[:alzd_Y + blzdi + i(blzdy - alzdi)]

A, = (21)

2 2
de2 + d,

Assume A; Is of the form

AL = A= IA (22)

The complex support amplitude Z; after some complex algebraic manipulations

Is given by
Z, = Alelmf - Rlen(wf - B1) (23)
where
A 2+ A2 1 I
Ry = Alr + Ali , Bp = tan (d—r-)
lf the shaft damping coefficient Cs is considered smal! in comparison

to the effective damping coefficient C, than the system displacements and
phase angles are given as follows
Ko? + (wCy)?2

Ry = Mzeuwz _— (24)

dr'2 + dlz

and the phase angle of the support motion relative to the rotating unbal-

ance load is given by



szl - wCZd
8y = tan™} | ——— X (25)

Kod _ + uCyd,

Since the complex rotor support motion Z; is given by

(ot - 8))
Zl = Xy + iY¥; = Rije

Then for example, the horizontal and vertical components of the support

motion are given by

{xl} , Kp2 + (wCy)2 {cos(uﬁ* - 31)}
= Me S . (26)
Y1 u” drg + diz sin(wt - B8;)

In a similar fashion, the complex rotor amplitude Z; is given by

apy + ibll iwt

= 2
2y = Mzeuw T Td—°© (27)
r i
After some manipulation, Eq. 28 reduces to the following
/(Kl + Ky - Mu2)2 + ((C] + Colw)2  T(wt - By)
Z, = Mpe w? e (28)
Y V d2+4d.2
r i
where
(K1 + Ky = lez)di - (Cy + Cz)wdr
g, = tan! (29)
(K; + Ky - lez)dr_ + (Cy + Cplud,
The relative journal displacement is given by
ZJ =2y = Zy - ZS (30)
Where the relative shaft deflection Is
(Z, - Z1)
ZS = T—' [KS - KZ - leZ:] (31

Solving for the journal displacement



i(wt - B.)
i (w BJ

Zj = Rb e
where,
(Ky = Mw?)2 + (wCp)? K, - Ko|\2  fwCy)\?
R, = Mye w? X |——] o+ |—
J u d2+42 K K
r I S S
(32)

and the phase angle Bj befween the journal amplitude and rotating un-

balance force Is given by

(Ky - lez)di - wCyd_

Bj = tan~! + Tan'l(

UJCZ
———re (33)
KS - K2 )

(K, = lez)di + uCyd,
FORCES TRANSMITTED

The magnitude of the resultant forces transmitted through the bearings
and the support are of considerable interest to the designer from a stand-
point of bearing life and system isolation. It is desirable to minimize
the forces transmitted through the supporting structure and foundation so
that other machines or piping systems are not excited. The magnitude of the

force transmitted through the bearings is given by

- 2 2
Fy Rj'\/Kb + (C,) (34)

and the force transmitted through the support system is given by

F1 = Ry VK2 + (wCyp)?2 (35)

An indication of the effectiveness of the support system in attenuating

the forces transmitted to the foundation is the support dynamic transmissi-
bility factor TRD which will be defined as the ratio of the magnitude of the
transmitted support force to the rotating unbalance load. If the dynamic
transmissibility Is less than |, then the support system possesses good
attenuation characteristics. Analysis has shown that if the support

housing impedance characteristics, which are determined by the housing mass,

10



stiffness and damping, are mismatched to the rotor-bearing system then,

under certain speed conditions the dynamic transmissibility may exceed |.
The dynamic transmissibility for the support is defined as

Fi (K2 + (wCy)2) (K2 + (Cyw)?)
TRD = = (36)

Mye w? d?+4d.2
u r l

if it is assumed that the rotor is operating well above any of the
system critical speeds then the dynamic transmissibility is approximately

given by

| (Kp2 + (wCy)2) (K 2 + (Cqw)?)
TRD * — (37)

w M;2M,2

The above expression leads to the well known conclusion that to
minimize the forces transmitted through the support for supercritical
speed operation in the Jeffcott model, the support damping should be
zero and the support stiffness should be as |light as possible (28).
This is a highly undesirable design practice for several reasons since
large rotor amplitudes and forces transmitted may be encountered when pass-
ing through the rotor critical speeds, and also the rotor system would be
extremely shock sensitive and particularly susceptible to self-excited

whirl Instability under such conditions,

A compromise support damping coefficient should be selected to either
minimize the rotor amplitudes or the forces transmitted over the operating

speed range and also be sufficient to insure adequate rotor stability.

ANALYSIS OF SYSTEM UNBALANCE RESPONSE - TUNED SYSTEM

Figure 3 represents a computer generated plot of the dimensionless
rotor relative amplitude versus the dimensionless rotor speed for the
case of K=M = 1|, This relative rotor amplitude is equivalent to the
motion monitored by a proximity probe mounted in the casing measuring
the rotor motion at the center span. This system represents a tuned

condition in which the support stiffness ratio K is equal to the support



mass ratio M. With no support damping in the system, the tuned support
will cause the relative rotor amplitude to be zero at a speed correspond-
ing to the rotor critical speed with rigid supports. The Introduction

of support mass and flexibility has caused two critical speeds to appear
in the system; one above and one below the rigid support rotor critical.
Note that when the support damping is relatively low the amplitudes at

the two criticals becomes extremely high.

As the dimensionless support damping ratio C increases from 0.0l to
10 the rotor amplitudes at the system critical speeds decrease while the
amplitude increases at a speed corresponding to the rigid support critical
speed (w/mC = 1). Note that in this case the damping value of 10 appears
to be close to an optimum value for the minimization of the resonance
amplitudes. If the support damping is further increased from 10 to 50,
Fig. 3 indicates that there will be only one critical speed present in
the system which will correspond to the rigid support critical. Although
the damping of C = 50 is over 5 times the optimum value, the maximum
amplitude is only I/3 the rigid support value of 10. As the support damp-
ing approaches Infinity, the rotor amplitude will asymptotically approach
0.

Figure 4 represents the absolute dimensionless rotor motion for various
values of support damping ratio and is similar to Fig. 3. |t should be
noted that the damping coefficient of 10 also appears to be close to the

optimum damping for the absolute motion as well as the relative motion.

It is of interest to note that the various damping lines all intersect
at a common point P in the plot of absolute as well as relative rotor motion.
I'f The rotor amplification factor A is 100 (implying |ight rotor damping)
then there will be two common points of intersection P and Q on the response
plots (see Fig. 10) similar to that shown by Den Hartog for damped vibration
absorber (15). The intersection points P and Q will occur at speeds res-
pectively below and above the rigid support critical speed. The rotor
amplitude may be minimized for the case of the absolute rotor motion by
selecting the damping such that the slope of the response curve is zero

at point P, and zero at point Q to minimize the rotor relative motion.

12



Figure 5 represents the phase angle befween the rotating unbalance
vector and the absolute rotor displacement vector for various damping
coefficients. The phase angle for the single mass rotor on rigid supports
(Jeffcott model) increases as the speed increases from 0 to 90 degrees
at the critical speed and asymptotically approaches 180 degrees as the
rotor speed greatly exceeds the critical speed. The phase angles of the
rotor on damped flexible supports has a considerably different behavior
from that of the rigid support rotor. For light values of supporting damping
(C = 0.01), the phase angle increases rapidly to 180° as the system passes
through the first critical speed and drops to almost 60° as it passes
through the second critical speed. As the speed greatly exceeds the
highest critical speec, the phase angle again approaches 180°. The phase
angle of 180° indicates that the rotor mass center lies along the rotor
spin axis. As the support damping coefficient is increased beyond 5 for
the case of the tuned system, the reduction in phase angle above the first
critical speed is suppressed. This phenomena of phase angle reversal

above the first critical speed has been observed experimentally.

Figure 6 represents the support amplitude versus speed for various

damping values and indicates that with very [ight support damping there

will be large support resonances. As the damping is increased beyond
C = |10 the resonances are suppressed and the amplitude is only slightly
greater than |. For C = 50 there is only a small peak observed in the

support system which occurs at a speed corresponding to the rigid support
critical speed. The addition of high damping (C > 50) freezes the support

and limits its motion drastically.

Figure 7 represents the support phase angles versus speed ratio for
various values of support damping. The phase angle for light damping
(C = 0.01) is zero at low speeds and goes to 180 degrees as it passes
through the first critical and then shiffs to 330° upon passing through
the second critical speed. If the rotor damping is light (A = 100) the
support phase angle will approach 360° after passing through the second
critical speed. Note that the various damping lines intercept af three
points. The first node point represents the first system critical speed,

13



The second node point represents the rigid support critical speed and the
third node point represents the second critical speed on flexible supports.
In the discussion of the single mass flexible rotor presented in vibration
texts (27) the phase change is only shown from zero to 180 degrees. In
more complex systems with flexible supports, the phese change may vary
between 0 and 360 degrees. For example in multimass systems the authors
have observed phase changes of n times [80 degrees where n represents the
number of system critical speeds. The measurement of rotor and support
phase angles have been neglected and |imited data has been reported in the
literature. This is an extremely useful variable which when incorporated
with displacement measurements can be used in balancing flexible rotors

or impedance calculations of the support system.

Figure 8 represents the dimensionliess bearing forces transmitted for
the tuned system. The dimensionless force transmitted is obtained by
dividing by the transmitted force corresponding to the value at the crit-
ical speed of the original rotor on rigid supports. Because of the light
shaft damping the force transmitted curves are similar in appearance to
the displacement curves. Note that for the support damping coefficient of
C = 10 the forces transmitted to the bearings are only 17 percent of value
transmitted for the rotor bearing system on rigid supports.

Figure 9 represents the force transmitted through the bearing supports
to the foundatation or base for various values of supporting damping. With
a very lightly damped support system, (C = 0.0l) the support amplitude and
force transmitted will be particularly high at the first critical speed
where the bearing and support motions are in phase. At the second critical
speed, the support amplitude is lower than the amplitude attained at the
first critical speed. This is because the bearings and support motions
are out of phase which enables the bearing damping to help attenuate the
support motion. It is of interest to note from Fig. 8, for the tuned
rotor system, the bearing force transmitted at (w/wc) = | with an undamped
support system is zero. Figure 9 shows that the corresponding force trans-
mitted through the support system at w/wc = | has been reduced to only 10%
of the rigid support value.



The force transmitted for an undamped support system at a speed
ratio of four is approximately 10% of the rigid support value. This con-
dition would be desireable if it were possible to accelerate through the
criticals, thereby avoiding the large steady-state amplitudes and forces

developed.

The near optimum damping of 10 increases the support forces transmifted
in the supercritical speed region to 30% of the rigid support value and
the overdamped support system (C = 50) has increased to nearly 80%. Hence,
the support damping Introduced to suppress the system resonances will cause

the forces transmitted to increase in the supercritical speed region.

If the system is designed to operate over the entire speed range shown,
then the near optimum value of damping (i.e., C = 10) for suppressing the
rotor absolute amplitude also produces the most desirable attentuation of

forces to the system support structure.
OPTIMUM DAMPING FOR TUNED SYSTEM

From the observation of the computer generated displacement and force
transmitted plots it is apparent that there exists an optimum damping fo
either minimize the rotor amplitudes or the forces transmitted over the

entire speed range.

For example to minimize the absolute rotor motion as shown in Fig. 4
or the relative rotor motion shown in Fig. 3, the method of (16) may be
used in which the damping is chosen so that the slope of the amplitude
curve is zero at points P and Q respectively. In the tuned system where
K/M = | for light rotor damping (A = 100), the rotor amplitudes at points
P and Q are independent of the support damping as shown in Fig. 10 and

can be shown to be equal to

X, = xp/e | =Vl + 2M (38)
u'P,Q
Therefore with the tuned system illustrated with a mass ratio of M = 1|, .
the maximum amplitude at P or Q will be 1.732 times the rotor unbalance

15



eccentricity. The optimum damping may be selected so that the tangent to
the amplitude curve at either point P or Q has a zero slope. By selecting
the optimum damping in this fashion it is seen that the maximum amp!itude

in the system will not exceed the value given by Eq. 38. Thus it is readily
apparent that to minimize the rotor response over a given speed range, the

support mass should be kept as |ight as possible.
After considerable algebraic manipulation (28) the optimum damping

coefficient for both points P and Q is given by the following expression

_ MBS - 3M2(AM + 3)p2 + M(122 4 I3M + 8)p -~ M(I + 2M)2
£2 =
—12Mp2 + 8(1 + 2M)y - (1 + 2M)

(39)

where,

£ = CI/CC = C]/CZ x ‘/2A = Cl m

v = 0,2 or 922 depending on whether the value calculated is for point

P or Q respectively.

and
Qz_vl'{'ZM
12 s £
I + Y] + 2M
0.2 = VI + 2M
p? = ———— 2T
Yl o+ 2Z2M - |
For example, when M = | and for the first node, P:
V=22 = B 0.634
| + V3
and
€2 = 0.447
Hence



C1
ol = 0.688 for point P
c'opt

In a similar fashion

Cy
ol = 0.559 for point Q
c'opt

Example 2

As an example of the application of the funed support design criteria
consider the rotor of Example | mounted in flexibly supported bearing housings
which weigh 48.5 Ibs and have a stiffness of 125,000 Ib/in. The total
support weight W; and stiffness K; is given by

W, = 2 x 48.5 = 97 |b

Ky = 2 x 125,000 = 250,000 Ib/in
Hence,

M = MI/MQ = [.0

K = KI/KZ = 1,0

The critical damping coefficient CC is given by

_ 2" 500,000 Ib/in
c w, [,000 rad/sec

= 500 Ib=-sec/in

Thus the support damping coefficients required to make the slope of
the rotor amplitude curve zero at points P and Q are respectively given

as follows

Cy| =0.688 x C 344 Ib-sec/in
p c

Cy|_ =10.559 xC 279.5 lb-sec/in
g Cc



These calculations are valid only for the case of zero damping on
the rofor and in the bearings (i.e., A = =) and only for the tuned system
(i.e., K=M). For a more realistic solution, a value of A = 10 was chosen
and numerous cases were then programmed on a digital computer to arrive at
a value of optimum amplitude and required damping. This approach is dis-
cussed in the next section of this paper but the results for the tuned
system are very nearly the same as the results arrived at analytically for

the case of A = » and are presented in Fig. I}.

The results shown in Fig. |l are approximately correct for systems

having moderate to 1ight damping on the rotor (i.e., 10 £ A < =). Note

that the smaller the mass ratio M is, the lower the peak response will be
and also the lower the required support damping will be. For example, if
the mass ratio is 0.1, then the maximum dimensionless amplitude will be only
.1 and the required damping ratio will be 5 as compared to a value of 13.6

for an M ratio of I. Figure 12 is a response plot for the tuned system
K=M= 0.1 which illustrates the validity of the results plotted in Fig.
I'l. The response curve for a damping ratio of 5 passes almost horizontal

through the node point and has the low amplitude ratio as indicated by

Fig. 11,
Examgle 3

Consider a rotor system similar to Example 2 in which the rotor rigid

support amplification factor A = |0.

For a tuned support system the dimension support damping coefficient

is obtained from Fig. Il for M = | as follows

C =0C/Cy = 13.6

where C, is given as 25 lIb-sec/in (Example |).

Therefore,

C; = 13.6 x C; = 340 Ib-sec/in



Note that this value is approximately the same as the value given In Example

2 for the required damping at point P corresonding fo A_.

This indicates that each support must have 170 Ib-sec/in damping to
achieve the optimum response of about 1.7 times the unbalance level of the

rotor.

Next consider a tuned support with a mass and stiffness ratio of 0.10
(see Fig. 12). Corresponding support weight and stiffness are given as

fol lows

W, 9.7 Ib/in

it

Ky = 25,000 Ib/in
The required damping is thus found from Fig. |l to be
C=5.0
or
C;y =5 x 25 = 125 Ib-sec/in
Thus only 62.5 lb-sec/in damping per support is required to obtain an
optimum response of |.l times the unbalance level of the rotor. This value

of I.1 is in comparison to a maximum response of |0 times the unbalance

level for the rigidly mounted rotor-bearing system.

OPTIMIZAT ION OF SUPPORT DAMPING FOR OFF-TUNED CONDIT IONS

In general it is not possible or necessarily desirable to have a
tuned support system. The support to rotor mass ratio is usually dic-
tated by design considerations and can be varied only within certain
ranges. Figure |1 shows that for best reduction of rotor amplitude, the
support mass should remain as light as possible. However, it will be

shown that even with high mass ratio support systems the rotor amplitudes

]



can be attenuated by a factor of 5 by proper selection of the stiffness

and damping coefficients.

To evaluate the optimum damping for off-tuned conditions the computer
program was run for various support mass and stiffness ratios and each of
these for various damping coefficients. For example, Fig. |3 represents
the amplitudes at the rotor first and second critical speed for various
mass ratios with a dimensionless stiffness ratio of K = | as the mass ratio
and damping are varied. The solid |ines represent the amplitude at the
second critical speed and the dotted |ines represent the amplitude at the
first critical speed. With moderate support damping ratios it is observed
that as the mass ratio increases the amplitude at the first critical reduces
while the amplitude at the second critical increases. The optimum damping
was selected as the intersection of the amplitudes at the first and second
critical for a particular value of damping. For example, the lowest optimum
amplitude point on the plot is given by a damping ratio of 10 and produces
an amplitude ratio of about 1.5. Several plots similar to Fig. I3 were
produced and the results were then crossplotted to obtain plots of amplitude

versus damping ratio.

Figure 14 represents the maximum rotor amplitude vs. support damping
ratio for various values of dimensionless support stiffness for a rotor
bearing sysfem with a low support mass ratio of 0.0l. Figure 14 shows
that for this particular case, the lowest amplitude is achieved by a low
support stiffness ratio of K = 0.0l which is of the same order as the mass
ratio. With this low support stiffness, there is a wide range of support
damping (re. C =1 » 6) that can be used to achieve the low level of

rotor response.

Thus, under proper design conditions the support damping may be
allowed to vary by a considerable amount without impairing the rotor
performance. As the support stiffness ratio increases, the maximum rotor
~ampl itude response also increases and the required support damping must
be larger. For example, if the support stiffness ratio increases from
" 0.0l to 2.0, the optimum damping required increases by a factor of 15 from

approximately 2 fo 30.
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Note also that for high stiffness ratio support systems, the per-
missible range of the support damping coefficlent is very narrow, and
that elther a reduction or an increase of damping beyond the optimum

value will result in a rapid gain in rotor response.

f+ is also of interest to note that if a high support stiffness (K = 2)
is used in conjunction with a low value of support damping (C < 2) then the
rotor response will be worse than the original rotor response on rigid

supports (A = 10).

Figure 15 represents the maximum rotor response vs. support damping
for a high support mass ratio system (M = 2). It is obvious from the
comparison of Figs. 14 and 15 that the high mass ratio support system is
less desirable. The minimum rotor amplitude that can be achieved is X,/E = 2
with a tuned support where K = M = 2 and a support damping coefficient of
C = 20. (Also see Fig. Il on the tuned system.) As the support stiffness
ratio is reduced, the rotor response curve increases in the optimum damping

region.

If it is not possible to incorporate a high value of support damping
into the system (C = 20), then the rotor amplitude can still be reduced
to 40% of the original rotor response by a low support damping value of
C = | and a reduced support stiffness ratio of K= 0.7. For low values of
support damping, if the support stiffness Increases beyond K = 0.7, the

rotor response rapidly increases.

A series of plots similar to Figs. 14 and |15 were produced for various
mass ratios in order to determine the optimum rotor response for off-tuned
support conditions. Figure 16 represents the rotor maximum amplitude vs.
the support mass ratio for various values of support stiffness with optimum

damping.

For the case of A = 10, Fig. 16 illustrates that the lowest amplitude
can be achived with a low mass ratio support system. With a high mass ratio
support system such as M = 5, the rotor amplitude X; can be reduced from [0
to 2.8 by means of a tuned support stiffness of K= 5.0 and optimum damping.

Note that as the support stiffness becomes very |ight, the maximum rotor
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ampl itude increases to 7.5.

At a fow value of support mass (M = 0.1), the rotor amplitude increases
as the support stiffness increases. The required optimum damping required
with the low mass ratio support is found to be given approximately by the
relationship that C = |5K for M < 0.2Z.

TRANSTENT ANALYSIS

The previous discussion has been concerned only with the steady-state
response of the rotor due to unbalance and has not considered the rotor
initial transient motion. As discussed previously, the damped flexible
support system is impo: tant, not only from the standpoint of reduction of
synchronous unbalance response, but also in the control of self excited
vibrations such as caused by internal friction, aerodynamic excitation, etc.
Therefore to investigate the general rotor motion and also to provide a
check on the steady-state analysis, the rotor equations of motion were
integrated forward in time on the digital computer using a modified 4th
order Runge-Kutta integration procedure. This procedure is of importance
particularly if the analysis is extended from a |inear bearing or support
system to include a nonlinear hydrodynamic damper bearing as presented in
Ref. 13,

The dimensionless rotor and support transient orbits were automatically
computer plotted by a Calcomp plotter with the following dimensionless

parameters
X = =
x/eu, Y y/eu

Figure 17 represents the initial transient orbit of a 96.6 Ib rotor
similar to Example | in highly damped support (C = 43) for the first 12
cycles of shaft motion. The support mass ratio and the support stiffness
ratio are both approximately the same (0.10) which represents a tuned
system. Because of the excessive support damping the maximum force

“transmitted to the support is 2.16 times the unbalance force while the
force fransmitted to the bearings is reduced by about 40%. The magnifications
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of the force to the support would be highly undesirable for applications
such as alrcraft jet engines. For example, varlous investigators have
observed that such a situation occurs with the hydrodydynamic squeeze film

bearing when operating at excessive eccentricity ratios ( 29).

Figure |8 represents the transient orbit for the same rotor system
except that the support damping has been reduced by a factor of 100 from
C; = 1,000 Ib-sec/in.to 10 Ib-sec/in. In this case, the maximum force
transmitted through the support is less than 16% of the rotating unbalance
force and the bearing force transmitted is below 9%. This orbit Is
analogous to a suddenly applied unbalance such as a blade loss in an engine.
Al though the forces transmitted have been greatly reduced with the low
stiffness and damping -upport system, the rotor has developed a large
initial transient motion of over 10 times the unbalance eccentricity and

this transient motion is not readily damped out.

In Fig. 19, the rotor transient motion is depicted with an optimum
damping coefficient of C = 5.5 for minimum rofor response as determined
fromthe steady-state analysis. The transient response is rapidly suppressed
after seven cycles of shaft motion to produce a small stable synchronous orbit.
The transmitted forces to the bearings and support are nearly balanced

to achieve approximately a 75% attenuation of the unbalance load.
SUMMARY AND CONCLUSIONS

The equations of motion for a single mass rotor-bearing system on
damped flexible supports have been derived and studied considering both
a steady-state and transient type analysis. Design charts for both tuned

and off-tuned support conditions have been presented.
The analysis may be summarized by the following general statements.

. The critical speed response of the single mass Jeffcott model
rotor may be completely eliminated by means of a low mass ratio flexible
support with optimum damping. In this case the rotor steady-state amp!li=
tude of motion over the entire speed range will only be slightly more than

t+he rotor unbalance eccentricity.
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2. The support mass ratio should be kept as |ight as possible

to achieve minimum rotor amplitude.

3. The rotor amplitude may be considerably attenuated even for high
mass ratio support systems by tuning the support stiffness such that

K'= M and incorporating optimum damping for the tuned conditions.

4. With a low mass ratlo support system, the required value of
optimum damping is not critical and can vary by a “actor of 10 without

appreciably effecting rotor performance.

5. As the mass ratio increases the required value of optimum damping
increases rapidly and the permissible range of variation of the support

damping diminishes.

6. The off-tuned support (K # M) can be designed to produce a con-
siderable improvement in system response in comparison to the rotor- on

rigid supports.

7. If insufficient damping is incorporated in the support then the
resulting rotor steady-state amplitude may be larger than the original

rotor response for support stiffness values K > 1.

8. If there is excessive support damping (C > 20) with a low mass
ratio support (M = 0.1), then the forces transmitted through the support
may exceed the unbalance forces (TRDS > [.0).

9. Although the steady-state analysis shows that the rotor amp! itude
will be small for an underdamped (C < 0.50) low mass ratio support system,
the orbital analysis shows that a large initial transient motion can be
generated due to the suddenly applied unbalance force and that +his motion
is not readily attenuated.

10. The transient program indicates that a rotor with an underdamped
and low stiffness ratio support system is highly susceptable to self

exclted non-synchronous precession or whirling.

i1, The optimum damping based on minimization of the rotor steady-
state amplitude for both tuned and off-tuned conditions produces a satis-

factory transient response from the standpoint of rapid reduction of the
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initial transient motion, improved system stability and reduction of the

forces transmitted.
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APPENDIX A
D1SCUSSION

A high speed rotor shaft may be considered as a contlinuous elastic
member with variable mass and inertia properties along its tength. The
rotor shaft usually has attached to it such components as turbine or
compressor blades, impeller disks, or spacer assemblies or seals. |f
the axial dimensions of each rotor component is small in comparison to the
overall length of the rotor, then each component may be treated as a con-
centrated mass with a polar moment of inertia equivalent to that of the
original component. If the mass of the components are large In comparison
to the shaft mass connecting the components, then the shaft weight can
be neglected or considered to be located at the mass stations. If the polar
moment of Tnertia of each section is ignored, then the stations may be
considered as concentrated masses, rather than distributed In the plane
of the rotor element. However, if the sections whirl In a plane, perpen-
dicular to the spin axis then the gyroscoplc moments do not act on the
system and hence the equations reduce to the same as if point masses were

assumed,

The position vector of the nth mass center Is given by

P=3 +3.+3 +%o
5b GJ 65 eu

where
Eg = vectoral bearing support deflection
3& = vectoral journal defiection
5; = vectoral shaft deflection
GL = displacement of mass center from the shaft centerline
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The system being analyzed has been reduced to a single mass rotor
mounted in idealized linear bcarings and the bearings are in turn mounted
on damped, elastic supports. By considering only small deflections, the
spring rate of the flexible, massless rotor shaft may be considered to be

| inear.

The rotor disk (see Fig. [) is considered to whirl in a plane and
hence no gyroscopic moments are acting on the system. The orthogonal support
and bearing spring rates are assumed symmetric and no cross coupling terms
are considered to be acting at the support housings. The aforementioned
assumptions allow the equations of motion of the system to be written as

total differential equations.

DERIVATION OF EQUATIONS OF MOTION

A.l Kinematics

The position vectors to the mass stations are given by

m;: bearing M, /0
housing mass P = Xlnx + Y1ny A.l1)
m,: rotor mass
M,/0
P = (X + e cos8)n + (Y, + eu51ne)ny (A.2)

The velocities of the mass stations are given by

M0 . :
v = Xl-I'TX + Yl?y (A.3)
_My/0 : . . :

v = (Xz = e, 8SInB)A_ + (Yp + euecose)ﬁ‘y (A.4)
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A.2 Kinetic Energy

The kinetic energy of the system is given by

MV. eV)+= J T ¢
i i 2 .- .t
i=t j=I

T = (A.5)

L
2

Il ~1N

i.wiw.
i=| b
neglecting the gyroscopic couples acting on the disc, the system kinetic

energy reduces to

T = %‘Ml(xlz +Y;2) + %-Mz[(xz - euesine)2 + (Y, - euecose)zj
| Y
+ §,¢Zze (A.6)

A.3 Potential Energy

The potential energy of the system is composed of the sums of the
potential energy of the flexible shaft, the potential energy of the bearings,

and the energy of support structure as follows

V =

Nf—

2 2 2 2 2 2
[KS(XS + Ys ) + Kb(XJ + Yj ) + Ky (X1 + Y4 ] (A.7)
where

XS = X2 - Xl - Xj

A.4 Dissipative Energy

The system dissipative energy consists of the damping functions provided
by the bearing support system, the bearings, and the external and internal
rotor damping and the aerodynamic rotor cross coupling as described by
Alford (4).

D=

| . . . . . .
i {C1(X12 + Y;2) + cb(xJ.?— + YJZ) + cs(xz2 + Y52)

T . T
+CID<5 Y S+ 20y X sts)j + Q(YoXy = X,Y5)}  (A.8)
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The internal damping function is dependent upon the rotor precession rate
and can cause self excited whirl instability when the rotor is operated
above the critical speed (26). Alford has demonstrated that the aerodynamic
cross coupling stiffness term can also cause rotor instability when the
rotor speed is supercritical. When the system dissipation function is com-

prised of only the first three terms, the system is inherently stable.

A.5 Lagranges Equations

The governing equations of motion are obtained from Lagranges Equations.

which state:

%? Rty -23L .80 . F (A.9)
aqr qu qu r
where
L=T-YV
The total number of equations of motion obtained will be equal to the

number of degrees of freedom of the system which is seven and are given as

follows.

Rotor

Xz: M2X2 + CSX2 + Cl(Xz X1 - Xb) + KS(X2 - Xl - XJ)

(A.10)

+QYz +wC, (Yp = Yy = Y) = Mae (w?cos (wt) + asin(wt))

Yo: MoY, + Cg¥a * CyfYa = Y1 = ¥)) + K(Yz = Y1 = Y[) = 0%

(A 11)

= WG, (Xp = Xy = X) Mg fwisin(wt) - asinlwt))

J
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wmmﬂﬂsmm

X0 (C, + COHX. = C.(Xy = X3) + (K_+ KX,

J i b™ ] i b N
(A.
- XwAXN - XHV - OqEAKN - <H - <Uv =0
. - - +
Vit (O L) - CiYa = Y1) K+ K)Y,
(A.13)
- K2 = YD) # ClulXy = Xy - X)) = 0
Support
X1 MXp + (Cp + CX, = C, (X, - X))+ (K + KX
(A.14)
- KgXg = X)) = CulYy = Yy = Y =0
Yi: MYp + (Cp + €Yy - C;(Ya = ¥)) + (Ky + KOV
(A.15)
" K2 = Y)) + ClulXp - Xy = X)) = 0
Angular Acceleration
. N (1] e - .. .
6: (o + MeZ)o + zumﬁ<~00mo X,5ind
(A.16)

- 8(Ypsin® + Xycos8)] = T, 9)

The equations A.10 to A.15 may be vectorially combined by representing

+3m displacements in complex notation as follows
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Z. =X, +1iY, (A.17)

Z,: MpZy + OmmN +C(Zy = 2y = Z) +K(Zp -2y - Z))

J
(A.18)
- 102, = 16C{(Zp = 21 = Z)) = Mae (u? - ia)e @T
Zj: (G, +C)Z; = C(Zp = 21) + (K, + K)Z,
(A.19)
- K(Zp = Z)) + iCulZy = 23 = Z)) = 0
Z;: MZy + (G + CZy - C,(Zp - Z)) + (K + KOy
(A.20)

- KmANM - Nuv + _OﬂeﬂNN - NH - Ngv =0
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NOMENCLATURE

Amplification factor at rigid support critical =
Complex bearing amplitude, in

Complex support amplitude, in

Complex rotor amplitude, in

Damping ratio = Cy;/C, (DIM)

Bearing damping, lb-sec/in

Critical damping coefficient, lb-sec/in
Rotor interial damping, Ib-sec/in
Absolute shaft damping, Ib-sec/in
Support damping, Ib-sec/in

Effective rotor-bearing damping, Ib-sec/in
Rotor mass eccentricity, in

Force transmitted to foundation, Ib
Force transmitted to bearing housing, Ib
Stiffness ratio, Ki/K,

Bearing stiffness, Ib/in

Rotor-shaft stiffness, Ib/in

Support stiffness, Ib/in

Effective rotor-bearing stiffness, Ib/in
Mass ratio, = M;/M, (DIM)

Support mass, lb-sec?/In

Rotor mass, Ib-sec?/in

Ist node point on response plot

Rotor cross-coupling stiffness, Ib/in

2nd node on response plots
32
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Rotor absolu displacement amplitude

Kinetic energy

Transmissibility = FI/(Mzeuwz)

Potential Energy

Velocity, in/sec

Support weight, Ib

Defined as X2

Shaft relative displacement in x - direction

Support displacement in x - direction

Rotor absolute displacement in x - direction

Journal relative displacement in x = direction

Shaft relative displacement in y - direction

Support displacement in y - direction

Rotor absolute displacement in y = direction

Journal relative displacement in y - dlirection

Complex shaft relative amplitude

Complex support ampl itude

Complex rotor amplitude

Rotor angular acceleration, rad/sec?

Phase angle of support motion relative to rotor unbalance, DEG
Phase angle of rotor motion relative to rofor unbalance, DEG
Phase angle of bearing motion relative fo rotor unbalance, DEG
Angular displacement, rad

Defined as K/M (DIM)

Damping ratio = Cl/CC (DIM)

Rotor absolute amplitude phase angle, DEG
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Moment of inertia
Optimum amplitude for tuned system

Defined as 932 or 92,2 when calculating required damping at point

P or Q respectively

Rotor angular velocity, rad/sec

Rotor system critical speeds, rad/sec
Rigid support critical speed, rad/sec

Speeds at which the node point P and Q occur on response plots
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Figure 1. Schematic Diagram of Single Mass Rotor on Damped Elastic Supports
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ABSOLUTE ROTOR MOTOION

N = 30000 RPM M= 0.100
K= 0.092 C=  43.946
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Figure 7. Dimensiontess Transient Motion of an Unbalanced Rotor for 12 Cycles on
Overdamped Supports (K =M = 0.1, C = 44)
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ABSOLUTE ROTOR MOTOIGON
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Figure 18. Dimensionfess Transient Rotor Motion with Underdamped Flexible Supports
for 12 Cycles (K =M = 0.10, C = 0.44)
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ABSOLUTE ROTOR MOTOION

N = 30000 RPM M= 0.100

K= 0.092 C = S.493
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Figure 19. Dimensionless Rotor Motion with Optimum Steady-State Damping Showing
the Steady-State Orbit After Seven Cycles of Running Speed (K =M = 0.1,
C =5.5)

56 NASA-Langley, 1972 — 15 E=6931



